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CALCULATION OF SUPERSONIC FLOWS AT LARGE DISTANCES 

FROM SLENDER LIFTING BODIES* 

By Michael Schorling ** 
Langley Research Center 

SUMMARY 

The exact gasdynamical equations are solved f a r  from the axis of a slender body 
flying at an angle of incidence. The boundary conditions are obtained from slender-body 
theory. The solution allows one to make a prediction of the strength of the sonic boom 
as well as the position of the shock waves. 

INTRODUCTION 

Several theories have been developed for calculating sonic -boom ground pressure 
patterns and signatures. Most of these theories, such as those of Lansing (ref. l), Hayes, 
Haefeli, and Kulsrud (ref. 2), and Friedman, Kane, and Sigalla (ref. 3), are based on geo
metric acoustics. These theories have great advantages in calculating sonic booms for 
unsteady flight conditions in an inhomogeneous atmosphere. Although corrections have 
been made by introducing nonlinear distortions, these theories are  essentially linear in 
nature and are not adequate for handling such nonlinear effects as shock focusing or  cut
off Mach number. On the other hand, Whitham's theory (ref. 4) for the supersonic flow 
about noninclined axisymmetric bodies is based on a modified theory of characteristics. 
The results are obtained as solutions of the nonlinear differential equations of supersonic 
flow. 

The purpose of the present paper is to develop a theory to determine the supersonic 
flow in the f a r  field of a lifting body with a nearly circular cross section. The nonlinear 
differential equations for supersonic flow are systematically expanded in a perturbation 
series. The resulting system of differential equations can be easily integrated for each 
order of magnitude. 

*The material presented herein is based on a thesis entitled "Berechnung von iiber
schallstromungen weit entfernt von schlanken Flugkiirpern mit Hilfe der Charakteristiken
theorie nach der P.L.K. Methode" submitted in partial.fulfillment of the requirements for 
the degree of Doctor in Engineering, Rheinisch-Westfalischen Technischen Hochschule,
Aachen, Germany, December 1969.

**NRC-NASA Resident Research Associate. 
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The flow of a perfect, nonviscous gas f a r  away from a body flying at an angle of 
attack with a Mach number greater than 1is considered. The body must be tapered, 
slender, and have a nearly circular cross section. Discontinuities in slope are allowed: 
however, abrupt changes in cross-sectional area (e.g., by a stabilizer) are not permitted. 
Small amplitude oscillations around an axis normal to the direction of flight and through 
the center of gravity, as well as effects of an inhomogeneous atmosphere, can be included 
but are not considered in this paper. The extension to a stratified atmosphere is straight
forward. The extension would allow an investigation of the nonlinear effects at the caus
tic. The flow is assumed to be steady, homentropic, and homoenergetic. There are no 
heat or mass sources in the flow. These conditions imply that the flow is irrotational. 

SYMBOLS 

A cross-sectional area of body, rK2 

a speed of sound 

cP pressure coefficient 

c 1 = l - -n + l  1 
n cos2p(O) 

fm function of source distribution 

&)(e) function of integration 
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H total enthalpy 

h specific enthalpy 

Kb, radius of body 

M Mach number 

m Fourier number 

iii generatrix of Monge (or Mach) cone 

n number of degrees of freedom of the gas 

n generatrix of wave normal cone 

generatrix of wave normal cone in undisturbed flow 

generatrix of wave normal cone in disturbed flow 

normal to shock surface 

P pressure 


R distance away from the body at which the boundary condition is satisfied 


r cylindrical variable (radial distance) 


S entropy 
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S vector of the space E3 


T temperature 


t time 


‘i vector of the space z3 

U W  velocity of undisturbed flow field 
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W magnitude of the speed, IGI 

G vector of the speed 

ii components of the vector of the speed in a locally dependent base (i = 1,2,3) 

X abscissa of characteristic surface 

XS abscissa of shock front 

x 1 = x  


x2 = r cos J/ coordinates in the space E3 


x3 = r sin +I 
71= grad 5 

72 = grad r = s vectors in the space Y3 


7 3  = grad J/ = +� 


Z integration variable 


a! angle of attack 


P Prandtl factor, i K  

Y ratio of specific heats 


rl Prandtl transformation, Pr 


8 angle of inclination of the streamlines 


A, ~ 1 ,  K~ factors of proportionality
K ~ ,  

P Mach angle 

5 characteristic variable 

P density 
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U angle between shock front and undisturbed flow 

ui = (w,wJ  + @I (i = 1,2,3) 

azimuth angle 

4 potential function 

@ cylindrical variable (azimuth angle) 

w Prandtl-Meyer angle 

Subscripts: 

00 state of undisturbed flow 

* critical values 

Harmonic (or Fourier) numbers are  denoted by numbers in the subscript position 
o r  by the subscript m. The order of magnitude is indicated by positive numbers in 
parentheses in the superscript position or  by the superscript (j). The Greek letters p, 
v, a, and T used as subscripts and superscripts denote the Einstein summation con
vention. Single, double, and triple primes denote first, second, and third derivatives, 
respectively. A comma preceding a subscript denotes differentiation with respect to that 
subscript. 

A N A L Y S I S  

The exact nonlinear system of partial differential equations for supersonic flow 
is solved for large distances by using a perturbation method developed by Poincark, 
Lighthill, and Kuo (see ref. 5). 

The basic differential equations of the problem - the equations of continuity, irrota
tionality, and the condition of the characteristic surface - are expressed in invariant 
form. At first, this set of equations is expressed in cylindrical coordinates (x,r,@). It 
is advantageous to express the velocity vector G in a particular locally dependelit basis 
and to use the characteristic variable [ in place of the independent variable x. Con
sequently, the differential equations are transformed to [, r, and @ as independent 
variables and to the magnitude w, the angle of inclination 9, and the azimuth angle cp 
of the velocity vector as dependent variables. The nonlinear equations obtained by this 
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procedure are split into systems of quasi-linear differential equations of different orders 
of magnitude by expanding each unknown function in a perturbation series. These sys
tems of equations can be integrated easily in each order of magnitude, The integrations 
lead to arbitrary functions of integration which are determined by the boundary condition 
calculated from slender-body theory. All physical properties of the f a r  flow field can be 
calculated by this method. By using the three-dimensional analogy of Pfriem's formula 
(see ref. 6), the front shock can be calculated as well. Pfriem's formula for two dimen
sions states that for weak shocks the shock wave bisects the angle between the character
istics before and behind the shock. 

Formulation of Basic Equations 

The following equations, written in their invariant forms, describe the problem. 
Equation (1) gives the condition of irrotationality; equation (2), the condition of continuity; 
and equation (6),the condition of the characteristic surface. 

Condition of irrotationality.~-- The condition of irrotationality is 

cur lw '=O (1) 

Condition of continuity.- The condition of continuity is given as 

dP
-+ p div w' = 0
dt 

By the second law of thermodynamics P 
, the conditions of homentropic 

and homoenergetic flow are 

and 

The condition of continuity can be rewritten as 

a2 div w' -6 grad w = 0 

in which a2 = 91 is the definition of the speed of sound. 
* S  

6 


1 
I I I I I I  I I 



Condition of characteristic surface. - According to the theory of characteristics the 
generatrix of the wave normal cone is normal to the generatrix of the Monge cone %. 
The quantity 5 denotes the variable along the generatrix Ti. Thus, the generatrix 
is proportional to grad 5 ;  that is, grad 5 or, with X used as the factor of 
proportionality, 

The speed of sound a is related to the velocity by the relation 

w' (-3)= a (4) 

is is a unit vector (3.E= l), equation (3) yields 

X2 = grad 5 - grad 5 (5) 

ubstituting from equations (4) and (5) into equation (3) gives the equation of the charac
2ristic surface in invariant form as 

aagrad 5 grad 5 = (w' grad 5 )2 
(6 1 

The interrelation between the Monge cone and the wave.normal cone is shown in fig-
ire 1. The Mach angle is denoted by p. 

System of equations.- Within the system of basic equations composed of equa
ions (l),(2), and (6), there are five scalar differential equations for determining the 
inknowns 5 and S. Since the flow is homentropic, there exists the relation p 0~ py 

oetween pressure and density where y is the ratio of specific heats. Hence, 

h = 4na2 + Constant 

where n=- denotes the number of degrees of freedom of the gas. Combining this 
Y - 1  

equation with the equation for homoenergetic flow gives 

na2 + w2 = Constant 

Thus, the speed of sound a is a function of the velocity 5. 

If one thinks of equation (6) as the defining equation for 5 ,  then there are four other 
equations (eqs. (1) and (2)) for determining the vector of speed w'. Though the three 

$ 
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equations curl % = 0 are dependent on one another, they must be used together with the 
condition of continuity (eq. (2)). Alone, curl $ = 0 gives the solution % = grad @, as 
curl grad @ e 0. 

Change to a Characteristic Coordinate System 

After having formulated the system of equations in an invariant form, one must 
select a coordinate system in which to carry out the solution. A plotted point P has 
the coordinates 

x2 = r cos 1(/ 

and 

x 3  = r sin + 
as indicated in figure 2. 

The unit vectors in the space E3 are 

~ 1 =grad x1 

~2 = grad x (7) 

23 = grad x37 
as shown in figure 2. From equation (7) one calculates 

-1- -b

As shown in figure 3, e ,s, t is also a system of orthogonal vectors. It is useful 
to express the velocity vector % in a locally dependent basis and to define a new set of

-3  -1velocity components in this basis. The space E ( e  ,s, =..t ) just  introduced will be used. 
According to figure 3 the velocity vector can be related to its magnitude w, its angle of 
inclination 8,and its azimuth angle q + rc/. So the velocity vector is written as 
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s = wkos  S I +  sin s(cos q~ + sin q ~ j  (9) 

4 4  -
In the space E3(z1,s,t ) the new components of velocity i,,w2, and %, are defined 
as 

- 6  
wi= avi (i = 1,2,3) (10) 

where 

(i = 1,2,3) 

So f a r ,  the unknown func-ions have been expressed in terms of cylindrical coon i
nates; that is, 

w' = i (x , r ,+)  

and 

Since disturbances sent out by a body travel along characteristic surfaces, it is preferable 
to introduce a ?kharacteristicvariable" 5 along the generatrix 5. Hence, the indepen
dent variable x is replaced by the formerly dependent variable 5 .  This step follows 
the Poincar6-Lighthill-Kuo (P.L.K.) method (see ref. 5). 

The new independent variable defines those characteristic surfaces propagated from 
the body. Disturbances traveling along the other family of characteristic surfaces are of 
lower intensity. For this reason, and also because the coordinate r seems to be phys
ically much more reasonable, it is convenient to retain the variable r and avoid intro
ducing a second characteristic ,variable. Now 

and 
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Final Form of Equations 

The base vectors T1, T2, and T3 for the coordinate system [,r,+ are defined 
by the equations 

Although T2 is a unit vector, Y1 and T3 are not. 

In the space Y3(?j11?j21?j3), 

Here and in the following equations, the Einstein summation convention is used. The 
Greek subscripts and superscripts p, a, and T indicate this summation convention. 

From equation (12) one determines that 

x5
($ - xrz -;X*T) (13) 

Analogously, the operator grad is determined in the space Y3 as 

x5 grad = %ID[ +ZDr + $TD+ (14) 

where Dt, Dr, and D* are abbreviations for the operators defined by the equations 

D[ = a t  Dr = XE a, - X r  a t  D* = X[ a* - X+ at 

Furthermore, 

-curl w =7?X -aG aua = grad ua x w, 
aua ax 

S aua * 
div =zT --= grad u'J. wa 

aua axT 
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By using equations (15), equations (l), (2), and (6) can be written in terms of the velocity 
components, Gly G2, and G-3 and the independent variables 5 ,  r, and +. The 
results are 

To simplify equations (16) the Prandtl-Meyer function dw = cot p W is intro
duced. Here, w denotes the Prandtl-Meyer angle and 1-1 denotes the Mach angle. By 
using equation (10) the vectors Gi can be expressed in terms of the orthogonal vectors-z1, s, and f. The five scalar differential equations obtained by this procedure are 

Condition of irrotationality: 

In direction of X1, 

tan p sin 9 sin qDro  - 1tan p sin 9 cos qD+w + cos 9 sin qDr9 

- 4cos 9 cos qD+9 + sin 9 cos qDrq + $ sin 9 sin qD,p + 1 sin 9 sin qx5 = 0 

( 1 7 4  

In direction of z, 
tan p sin 9 sin qDto  - 1 tan p cos 9D+o + cos 9 sin qDt9 ' 

+ 1 sin 9D+9 + sin 9 cos qDtq  = 0 

In direction of f, 


tan p sin 9 COS qD5w - tan p cos 9Drw + cos 9 cos qDt9 


+ sin 9Dr8 - sin 9 sin qDtq = 0 

11 
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Condition of continuity: 

Condition of the characteristic surface: 

(cos 9 - sin 9 cos qxr - sin 9 sin cp Fx+,” = sinapjl +xr  2 +Ax*2) 

These five equations are the starting point for a perturbation calculation. 

Calculation of Perturbation 

The system of nonlinear partial differential equations (eqs. (17)) is solved by using 
a perturbation method. The following assumptions are made for the unknown functions: 

The superscript in parentheses denotes the order of magnitude. It is assumed that for 
large distances r the zero-order term is greater than the first-order term, the first-
order term is greater than the second-order term, and so forth. These series do not 
contain any assumption about the value of the orders of magnitude. The terms in the per
turbation series can be calculated without making any such assumptions. 

Some prior knowledge about the f a r  flow field to the zero order can be used to 
shorten the calculations. For large distances r, 
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o(0) = Constant 

= 0 

,@(O) = 0 

a, --1 
r 

a, << a t  

Xr(0) = Constant x((0) = Constant (19) 

at - a@ 

8, << 8,p I
but xr x+ -xt. The assumption = 0 implies that the abscissa S1= grad x1 is 
in the direction of the undisturbed flow. 

It is advantageous to develop each of the te rms  in the perturbation series in a 
Fourier series in @. Convenient forms for these developments are 

00 

where B stands for w,p,x,9, and so forth, and 

00 

Naturally, the system of equations developed in Fourier series must also be satis
fied for each Fourier number m. By developing each of the five scalar differential equa
tions (eqs. (17)) into Fourier series and suitably combining equations, one gets equations 
for the different orders up to the second order: 
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(2li) 

In these equations, the Fourier number m takes integral values in the range -00 5 m S 03, 

and the summation convention is indicated by the Greek letter v, with -03 S v S 00. In 
fact, for axisymmetrical body shapes one can restrict  v to 0 5 v S 2. Within this 
restriction the desired functions are sufficiently approximated. 

Zero-, First-, and Second-Order Perturbation Solutions 

In deriving the system of equations (21), the results of zero-order calculation have 
already been used; that is, 

and 

Because of the special structure of equations (Zl), one cannot obtain any information about 

x5('1. In linearized two-dimensional flow the characteristics are straight lines parallel to 
each other and obey the law 

x = < + r c o t p  

From this equation one estimates that in three-dimensional flow 

,(O) = 1
5 
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By using the relationship between the Mach angle p and the Prandtl-Meyer 
angle w in homoenergetic flow, one gets 

From a Taylor series for '1.1 in powers of w, one obtains the following expression' 
for 1.1, which is correct to second order: 

Here c1 and c2 are constantsdefined by 

c 1 = l - -n + l  1 
n cos2p(0) 

and 

With the use of equation (24), this system (eqs. (21)) can be integrated in a system
atic step-by-step procedure. The details of the integration are given in reference 7. 

The first- and second-order solutions are as follows: 
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The terms G,(j)(6) are functions of integration with respect to r which are to be cal

culated from boundary conditions. 

Coordinate of Shock Waves 

In order to calculate the coordinates of the shock wave in the space Y3,Pfriem's 
formula is extended to this problem. Pfriem's formula of plane steady flow states that 
for weak shocks the shock wave bisects the angle between the characteristics before and 
behind the shock (ref. 7). One can extend the formula to the space Y3 by considering 
not the shock wave but the normals upon the shock surfaces. 
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The following definitions are used: 

* 
no0 normal to  the generatrix of the Monge cone in the undisturbed flow 

-
"5 normal to the generatrix of the Monge cone in the disturbed flow 

"S normal to  the shock surface 

These vectors are shown in figure 4. 

The extension of Pfriem's formula to space Y3 is given by 

* *  * n, ns =?it ns 

Analogously to equation (3), set 

* 
no0 = K 1  grad 5 ,  

X5 = K~ grad 5 

* 
"s = K3 grad 5s 

with K ~ ,  K ~ ,and K~ as factors of proportionality chosen so that ii,, %<, and ?is are 
unit vectors. 

Combining equations (26) and (27) yields 

Equation (28) must be developed in the same way as equations (17) to obtain a set analo
gous to equations (21). Up to the second order, this set is 
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Gm 

These equations can be integrated to  give 

x (2)sin2p(o) = -(1 - cl)Go(2)(<)r1/2 
SO 

For general three-dimensional flow, the solutions are valid up to first order; for axisym
metrical flow, up to second order. 

Satisfying the Boundary Condition 
In equations (25) and (30)the functions of integration Gm(9( t )  were introduced. The 

functions Gg)([) and (2) ( t )  must be calculated from the boundary conditions. Unfor

tunately, the boundary conditions are formulated at the body itself though system (21) has 
been integrated for large distances r away from the body. In this paper, the boundary 
condition will be obtained from slender-body theory, a linearization of the singularity 
method. Use of this linearization is another approximation. But slender -body theory has 
the advantage of short, compact solutions. As system (21) has been integrated for large 
distances r, the solutions cannot be continued to the body itself to satisfy the boundary 
condition there. One must satisfy the boundary condition at some distance R away from 
the body. For this purpose, the following procedure is used. 

It is assumed that the disturbances sent out by the body run along straight charac
teristics (zero-order theory). At the distance R the straight characteristics are 
matched with those characteristics which result from the exact theory and which are 
valid for large distances. A discussion of the matching distance R is presented sub
sequently in connection with an example calculation. 

From a physical standpoint, a proper way to calculate the functions of integration 
is by considering the angle of inclination of the streamline. The inclination may generally 
be expressed by 

Vtan$=-u ,+u  

18 



Here v denotes a vertical velocity component and u, + u, a horizontal velocity com
ponent. For small disturbances this equation can be approximated as 

where P = and 7)= @r.The boundary condition is satisfied by using the 
equation. 

Developed in perturbation and Fourier series, equation (31) can be rewritten as 

By comparing equation (32) with equations (25), the function of integration can be 
expressed in terms of @q, which itself can be determined by slender-body theory. The 
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In order to determine the quantity $q, a modified equation given by von K&rmkn and 
Moore (ref. 8) is considered: 

Here fm(n) denotes source distribution functions (which are given subsequently) and 

The derivative with respect to q = or gives 

Developing the integrals in equation (34) for slender bodies, or  small q, gives the func
tions fm. Since only symmetrical bodies are considered, one can restrict m to 
0 5 m S 2 and obtain 

The functions fm(z) which follow from slender-body theory are 

20 




1 

- - 

The angle of attack of the body a! is measured counterclockwise, as shown in figure 5. 
The radius of the body is denoted as K(x,q) and can be developed in a Fourier series 

as K(x,IC/) = 7 Km(x)eimq. Since one supposes equations (36) to be introduced in 
m=-m 

equation (35) and, after that, equation (35) developed in first and second order, one is able 
to calculate the functions of integration (eqs. (33)). This procedure shall now be demon
strated for a body of revolution. 

The Body of Revolution Flying at an Angle of Attack a! 

For a body of revolution the radius is simply 

Therefore, the source distribution functions (eqs. (36)) are 

o r  

f& - 77) = - 2n A"(x - q) 

where A = ?rK2 denotes the cross-sectional area of the body and 

f p ( x  - q) = aq2  
28 

or 
 I 

The source distribution functions with higher Fourier numbers are all equal to zero. 
Thus, for a lifting body of revolution, only the Fourier numbers m = 0 and m = 1 have 
to be taken into account. By putting these numbers in the set of solutions given by equa
tions (25) and referring to equation (20a), it can be seen that 
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or  because of the symmetry at rc/ = 0, 

3(j) = + 23(1j)cOs rc/ 

The solutions can then be determined. 

The solutions for 3 and x are written as 

3") = + 3 y ) 2  cos rc/ = &l)+ 2 cos rc/G1 

(394 

and 


9(2) = 0 + 23\2)cos + 
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Calculation of the Functions of Integration 

For a lifting body of revolution, the functions of integration (eqs. (33)) can be writ
ten as 

c 


and 

Here, the quantities (j) are to be determined. This determination can be made, as 
‘‘m 

mentioned previously, by using the slender-body theory (eq. (34)). By using the derived 
source distribution functions for a lifting body of revolution (eqs. (37) and (38)), equa
tion (34) can be written as 

or, because 5 + r ]  = x, as 

In calculating the functions of integration 7) means here r ]  = PR. 
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By integration by parts the singularity at z = 5 can be removed. The result is 

F 


1 


After the development of the integrand in power series, the integration is possible, As 
a result of these operations, the first  term of @ vanishes. Since the values of q

70 
considered herein are large (q > 10) and the values of 5 are small (t = 0 to l), it can 
be seen that the magnitude of the second term of @ is about q times larger than the 

70 
third term of @ Therefore, the second term is of the first order and the third term

70' 
is of the second order. One gets for pointed bodies (A(0) = A'(0) = 0): 

Here and in equations (43) and (44), 

A1 = A'[ - A 

A2 = A'E2 - 2A5 + 2 J: A(z)dz 

and 

A3 = A't3 - 3AE2 + 6 s,' A(z)z dz 

24 
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knalogously, the term Q is calculated to be 
71 

Hence, 

1 

The functions of integration are determined as 

and 
. 

+. . )  
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The Sonic-Boom Signature 

Finally the sonic-boom signature is calculated. The pressure coefficient is 

1 
P - P, 

2 
= cp= -2@, 

ij P,Um 

where & is the disturbed velocity in dimensionless form in the direction of Z1 and 
where the subscript 00 characterizes the values of the free-stream flow. The disturbed 
velocity @, is 

+ , = ~ c o s 8  - 1 u, 

Hence, the pressure coefficient becomes 

Using the energy equation of homoenergetic flow 

and the definition of speed of sound 

one gets 

dM*The term M* is given by the Prandtl-Meyer angle o = s, cot p - and is a function
M* 

of p and w. The integration is possible because p can be expressed as a function 
of M*. The integration gives 

(n + 1)tan n + lM*2 = 

26 
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where 

The term w(O) is given by 

I n 

and u( l )  and w(2) are given by equations (25). 

In equation (45), 

and 

The terms and 9(2) are also given by equations (25). 

Comparison With Result of Reference 4 

For a body of revolution at zero angle of attack, the equation of the abscissa x is 
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By using n =- and cot2,u(0) = Mca2- 1, the previous equation becomes 
Y - 1  

In comparison, Whitham's result (ref. 4, eq. (99)) is 

Though it is impossible to equate the terms of both solutions as different methods 
of calculations have been used, similarities in coefficients can be seen. Above all, the 
comparison shows that, in general, both solutions obey the same power series. But one 
must recognize that in the present paper no approximations have been made in obtaining 
the solutions of the nonlinear differential equations; however, approximations are made 
in evaluating the functions of integration. The slender-body theory has been used in both 
papers to calculate the functions of integration. An extension of Whitham's theory for 
slender lifting bodies is given in reference 9. 

EXAMPLE CALCULATIONS 

The sonic-boom pressure signature has been calculated for different Mach numbers 
for two bodies of revolution. The cross-sectional areas of the two bodies are given in 
dimensionless form by 

28 




A1 = 0.04(x2 - 2x3 + x4)n (0 5x 5 1) 

and 

A2 = 0.01(4x2 - 4x3 + x4)n (0 5x 5 1) 

The numerical evaluation is made by using equaticn (45). 

In figure 6 the functions of integration G(l)(() and G(2)([) are drawn for the two 
body shapes considered. As was mentioned previously and is illustrated in this figure, 
the second-order integration function is much smaller than the first-order integration 
function; this fact provides a justification for restricting oneself to a first-order calcula
tion. Thus, the influence of the second-order calculation has been neglected in the exam
ple calculations because of the appropriate choice of the first- and second-order integra
tion functions (eqs. (44)). 

The boundary condition was  satisfied at some distances R away from the body. 
As shown in figure 7, the function of integration G(l)(() is independent of the value of 
the matching parameter R over the range 3 5 R S 50. For smaller values of R, the 
solutions broke down as the set of differential equations was  solved for large distances r, 
whereas for larger values of R, the boundary condition was not accurately represented 
by slender -body theory. 

As shown in figure 8, the point of intersection of the Mach line of the undisturbed 
flow through the nose of the body and a parallel line to the abscissa x at the radial dis
tance r gives the origin of the plots of the pressure signatures shown in figures 9 to 11. 
In figure 9 different pressure signatures for one body of revolution are drawn. The angle 
of attack a,the azimuth angle Q,and the radial distance r where the pressure signa
ture is calculated are fixed. Here, the pressure signature is a function of the distance R 
at which the boundary condition is satisfied. It can be seen that the different values of the 
matching parameter R do not influence the shape of the pressure signature. In all the 
sample calculations only the bow shock was calculated according to equations (30). 

Figures 10 and 11 show the influence of the factor a! cos Q and the radial dis
tance r on the pressure signature. Naturally, the pressure rise increases with 
decreasing distance r and increasing Mach number. Furthermore, the pressure rise 
for a lifting body is greater at the bottom side (Q= 180°) than at the top side (Q= Oo). 

In figure 12 a comparison of the results computed by the present theory and those 
computed by Whitham's theory (ref. 4) is shown. The agreement between these theories 
is rather good. However, it must be emphasized that the present theory has advantages 
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such as simplicity of equations, handling of lifting bodies, and easy extension to  more 
general problems as the change from a homogeneous to  an inhomogeneous atmosphere. 

CONCLUDING REMARKS 

The exact nonlinear system of partial differential equations for supersonic flow was 
solved for large distances by using a perturbation method developed by PoincarG, Lighthill, 
and Kuo. The unknown functions were expanded in a perturbation series. The system of 
differential equations were derived for each order of magnitude and the unknown functions 
obtained by step-by-step integration. The iitegration introduced arbitrary functions of 
integration which could be used to satisfy boundary conditions at the body. The boundary 
conditions were obtained as in previous studies of nonlifting bodies by using slender-body 
theory. However, axisymmetric lifting bodies with nearly circular cross sections were 
considered herein. In order to calculate the flow away from the body, the boundary con
ditions were satisfied not at the body itself, but at some distance R away from the 
body. The example calculations give reasonable sonic-boom signatures for arbitrarily 
chosen bodies of revolution. The results are  in good agreement with the previous com
putations for nonlifting bodies. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., July 20, 1971. 
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Figure 1.- Monge cone and wave normal cone. 

3
X 


Figure 2.- The coordinates of point P. 
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Figure 4.- Description of the weak shock (Pfriem's formula). 
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Figure 5.- The shock front and the characteristics. 
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(a) A1 = 0.04(x2 - 2x3 + x4)7r; M = 1.1. (b) A1 = 0.04(x2 - 2x3 + x4)7r; M = 2.5. 
Figure 6.- Comparison of the functions of integration G(1)( t )  and G(2)((). R = 20; a! cos J/ = 0.1. 
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(C) A2 = 0.01(4x2 - 4x3 +x4)7r; M = 1.1. (d) A2 = 0.01(4x2 - 4x3 + x4)7r; M = 2.5. 
Figure 6. - Concluded. 
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Figure 7.- Influence of the matching parameter R on the function of integration G(l)(t) .  
A2 = 0.01(4x2 - 4x3 + x ~ ) T ;  M = 1.5; (Y COS IC/ = 0. 
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Figure 8.- Description of the construction of the plots of the pressure signature. 
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(a) R = 3. (b) R =  10. 
Figure 9.- Influence of the matching parameter R on the pressure signature. 

A2 = 0.01(4x2 - 4x3 + d>,; M = 1.5; r = 100; CY cos = 0. 
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(c )  R = 15. (d) R = 20. 

Figure 9. - Continued. 
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(a) a! cos rc/ = 0; r = 50. (b) a! cos J / =  0; r = 100. 

Figure 10.- Influence of the distance r on the pressure signature for A2 = 0.01(4x2 - 4x3 + x4)r. 
M =  1.1; R =  20. 
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(c) a! COS 1c/ = 0; r = 1000. (d) a! cos @ = 0.1; r = 50. 

Figure 10.- Continued. 
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Figure 11.- Influence of the distance 
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Figure 11.- Continued. 
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